Foresight News đưa tin, phòng thí nghiệm AI phân tán Gradient đã phát hành khung công tác học tăng cường phân tán Echo-2, nhằm phá vỡ rào cản hiệu quả đào tạo nghiên cứu AI. Khung công tác này thực hiện tách rời Learner và Actor ở cấp kiến trúc, nhằm giảm chi phí hậu huấn luyện cho các mô hình lớn. Theo dữ liệu chính thức, khung công tác này có thể giảm chi phí hậu huấn luyện của mô hình 30B từ 4500 USD xuống còn 425 USD.
Echo-2 sử dụng công nghệ phân tách lưu trữ và tính toán để thực hiện huấn luyện bất đồng bộ (Async RL), hỗ trợ chuyển tải sức mạnh lấy mẫu đến các phiên bản card đồ họa không ổn định và card đồ họa đa dạng dựa trên Parallax. Khung công tác này kết hợp các công nghệ như độ cũ giới hạn, lập lịch chịu lỗi theo từng phiên bản và giao thức truyền thông Lattica tự phát triển, giúp nâng cao hiệu quả huấn luyện trong khi duy trì độ chính xác của mô hình.
Ngoài ra, Gradient dự kiến ra mắt nền tảng RLaaS (Học tăng cường dưới dạng dịch vụ) Logits, hiện đã mở đăng ký cho sinh viên và nhà nghiên cứu.