Gradient 推出分布式强化学习框架 Echo-2,并计划推出 RLaaS 平台 Logits

Foresight News 消息,分布式 AI 实验室 Gradient 发布 Echo-2 分布式强化学习框架,旨在打破 AI 研究训练效率壁垒。该框架通过在架构层实现 Learner 与 Actor 的解耦,旨在降低大模型的后训练成本。据官方数据显示,该框架可将 30B 模型的后训练成本从 4500 美元降低至 425 美元。

Echo-2 利用存算分离技术进行异步训练(Async RL),支持将采样算力卸载至不稳定显卡实例与基于 Parallax 的异构显卡。该框架配合有界陈旧性、实例容错调度以及自研 Lattica 通讯协议等技术,在维持模型精度的前提下提升训练效率。

此外,Gradient 计划推出 RLaaS(强化学习即服务)平台 Logits,目前已面向学生与研究人员开放预约。

免责声明:本页面信息可能来自第三方,不代表 Gate 的观点或意见。页面显示的内容仅供参考,不构成任何财务、投资或法律建议。Gate 对信息的准确性、完整性不作保证,对因使用本信息而产生的任何损失不承担责任。虚拟资产投资属高风险行为,价格波动剧烈,您可能损失全部投资本金。请充分了解相关风险,并根据自身财务状况和风险承受能力谨慎决策。具体内容详见声明
评论
0/400
暂无评论
交易,随时随地
qrCode
扫码下载 Gate App
社群列表
简体中文
  • 简体中文
  • English
  • Tiếng Việt
  • 繁體中文
  • Español
  • Русский
  • Français (Afrique)
  • Português (Portugal)
  • Bahasa Indonesia
  • 日本語
  • بالعربية
  • Українська
  • Português (Brasil)